Bikesrepublic

turbo

Sejurus Yamaha NMAX “Turbo” dilancarkan di Indonesia baru-baru ini, terma “Turbo” mencetus banyak pertanyaan yang menunjukkan beberapa kekeliruan. Jadi, mari kita lihat bagaimana sebuah pengecas turbo berfungsi.

Bagaimanapun, NMAX “Turbo” tidak menggunakan pengecas turbo yang sebenar. Sebaliknya, ia adalah mod yang membuatkan transmisi CVT hasilkan tork segera untuk memecut dan memotong.

Terdapat beberapa sebab mengapa pengecas turbo tidak popular di kalangan pembuat motosikal, walaupun terdapat era motosikal yang mengunakan pengecas turbo.

Apakah turbo?

Enjin pembakaran dalaman memerlukan udara untuk berfungsi. Udara disedut masuk, dicampur dengan bahan api dan dibakar. Pembakaran ini menukar tenaga kimia dalam bahan api kepada tenaga haba, yang seterusnya menolak omboh ke bawah untuk memutarkan aci engkol (tenaga kinetik).

Walaubagaimanapun, setiap piston boleh menyedut hanya seberapa banyak udara. Udara yang tidak mencukupi bermakna anda tidak boleh mencampurkan terlalu banyak bahan api, jika tidak bahan api yang tidak terbakar akan terbuang. Oleh kerana udara dan bahan api tidak mencukupi, enjin menghasilkan tork dan kuasa yang terhad.

Turbo mengubahnya dengan memaksa lebih banyak udara ke dalam kebuk pembakaran, untuk dicampur dengan lebih banyak bahan api, jadi enjin boleh menghasilkan lebih kuasa lebih tinggi.

Bagaimanakah ia berfungsi?

Premis asasnya ialah pengecas turbo menggunakan gas ekzos (daripada dibuang terus) untuk memampatkan udara.

Secara spesifik, pemampat dalam pengecas turbo menekan udara masuk sebelum ia memasuki manifold kemasukan udara.

  • Komponen utama pengecas turbo ialah:
    • Turbin – biasanya dengan rekabentuk jejari.
    • Pemampat – biasanya jenis pemampat emparan.
    • Hab aci pusat berputar.
  • Turbin

Bahagian turbin (juga dipanggil “bahagian panas” atau “bahagian ekzos” turbo) ialah tempat daya putaran dihasilkan, untuk turut memutarkan pemampat (melalui aci berputar melalui tengah turbo). Selepas ekzos memutarkan turbin ia terus masuk ke dalam ekzos.

Turbin menggunakan satu siri bilah untuk menukar tenaga kinetik daripada aliran gas ekzos kepada tenaga mekanikal aci berputar (yang digunakan untuk menggerakkan bahagian pemampat). Perumah turbin mengarahkan aliran gas melalui bahagian turbin, dan turbin itu sendiri boleh berputar pada kelajuan sehingga 250,000 rpm.

  • Pemampat

Pemampat menarik udara luar melalui sistem pengambilan udara dan memampatkannya, dan memaksanya ke dalam ruang pembakaran (melalui manifold masuk).

  • Hab aci pusat berputar

Hab aci pusat berputar menempatkan aci yang menyambungkan turbin ke pemampat. Aci yang lebih ringan boleh membantu mengurangkan kelambatan galakan turbo (turbo lag). Bahagian juga mengandungi galas untuk membolehkan aci ini berputar pada kelajuan tinggi dengan geseran yang minimum.

Sesetengah hab disejukkan dengan air dan mempunyai paip untuk mengalirkan coolant enjin. Satu sebab untuk penyejukan air adalah untuk melindungi minyak pelincir pengecas turbo daripada menjadi terlalu panas.

Keburukan pengecas turbo

Setiap penyelesaian kejuruteraan mencipta masalah lain. Begitu juga dengan pengecas turbo, maka penggunaannya terhad.

Kelewatan galakan turbo

Kelewatan galakan turbo atau turbo lag merujuk kepada kelewatan yang berlaku antara menekan pendikit dan pengecas turbo untuk memberikan tekanan rangsangan. Kelewatan ini disebabkan oleh peningkatan aliran gas ekzos (selepas pendikit dibuka secara tiba-tiba) mengambil masa untuk memutarkan turbin ke kelajuan di mana rangsangan dihasilkan (disebabkan oleh inersia turbin). Kesan kelewatan galakan turbo melambatkan tindak balas pendikit, justeru melambatkan penghantaran kuasa.

Kemudian, apabila tekanan rangsangan mencukupi, tork enjin meningkat secara tiba-tiba dan menyebabkan kenderaan memecut dengan tiba-tiba yang boleh mengejutkan penunggang.

Terdapat cara untuk mengatasi kelambatan ini,tetapi ia memerlukan banyak teknologi dan menjadi mahal.

Haba

Sistem turbo menjana banyak haba, memerlukan penggunaan minyak yang boleh menahan penyeksaan. Oleh itu, hanya minyak enjin sintetik disyorkan.

The Yamaha NMAX “Turbo” was recently launched in Indonesia, and the name “Turbo” drew plenty of enquiries which pointed to some confusion. So, let us take a look at how turbo works.

Anyhow, the NMAX “Turbo” does not use a real turbocharger. Instead, it is a mode to switch the CVT into delivering instant torque for speeding up and overtaking.

There are several reasons why a turbocharger is not popular among motorcycles, although there was an era of turbocharged motorcycles.

What is a turbo?

An internal combustion engine requires air in order to work. Air is drawn in, mixed with fuel and combusted. This combustion changes the chemical energy in fuel to thermal energy (heat), which in turn pushes the piston down to rotate the crankshaft (kinetic energy).

However, each piston can pull in so much air. Not enough air means you cannot mix in too much fuel, otherwise the unburned fuel is wasted. So, since there is not enough air and fuel, the engine produces limited torque and power.

The turbo changes this by stuffing in more air, to be mixed with more fuel, so the engine can produce more power.

How does it work?

The basic premise is the turbocharger utilises exhaust gas to compress intake air, rather than letting it go to waste.

To be a little more specific, a compressor in the turbocharger pressurises the intake air before it enters the inlet manifold. In the case of a turbocharger, the compressor is powered by the kinetic energy of the engine’s exhaust gases, which is extracted by the turbocharger’s turbine.

The main components of the turbocharger are:

  • Turbine – usually a radial turbine design.
  • Compressor – usually a centrifugal compressor.
  • Centre housing hub rotating assembly.
  • Turbine

The turbine section (also called the “hot side” or “exhaust side” of the turbo) is where the rotational force is produced, in order to power the compressor (via a rotating shaft through the centre of a turbo). After the exhaust has spun the turbine it continues into the exhaust and out of the vehicle.

The turbine uses a series of blades to convert kinetic energy from the flow of exhaust gases to mechanical energy of a rotating shaft (which is used to power the compressor section). The turbine housings direct the gas flow through the turbine section, and the turbine itself can spin at speeds of up to 250,000 rpm.

  • Compressor

The compressor draws in outside air through the engine’s intake system, pressurises it, then feeds it into the combustion chambers (via the inlet manifold). The compressor section of the turbocharger consists of an impeller, a diffuser, and a volute housing.

  • Centre hub rotating assembly

The centre hub rotating assembly (CHRA) houses the shaft that connects the turbine to the compressor. A lighter shaft can help reduce turbo lag. The CHRA also contains a bearing to allow this shaft to rotate at high speeds with minimal friction.

Some CHRAs are water-cooled and have pipes for the engine’s coolant to flow through. One reason for water cooling is to protect the turbocharger’s lubricating oil from overheating.

The cons of a turbocharger

Every engineering solution creates another problem, so it is all a compromise. The same goes for the turbocharger, hence its limited use.

Turbo lag

Turbo lag refers to the delay that occurs between pressing the throttle and the turbocharger spooling up to provide boost pressure. This delay is due to the increasing exhaust gas flow (after the throttle is suddenly opened) taking time to spin up the turbine to speeds where boost is produced (due to the turbine’s inertia). The effect of turbo lag is reduced throttle response, in the form of a delay in the power delivery.

Then, when the boost pressure is sufficient, the engine’s torque suddenly increases and the vehicle takes off, sometimes surprising the operator.

There are ways around this lag, of course, but it requires a lot of tech (read: expensive).

Heat

Needless to say the system generates lots of heat, necessitating the use of oils that could stand up to the torture. Hence, only synthetic engine oils are recommended.

Kawasaki Ninja ZX-25R kini menjadi motosikal 250cc paling berkuasa sejak dilancarkan di Indonesia, dua tahun lalu.

Manakan tidak, enjin empat silinder 249.8cc DOHC, 4-valve dengan penyejukan cecair itu mampu menghasilkan 50hp pada 15,500rpm dan 22.9Nm pada 14,500rpm.

Dengan enjin yang mampu ‘rev’ sehingga 17,000rpm, ZX-25R ternyata tiada lawan yang setaraf.

Jentera suku liter dari Kawasaki itu juga turut menghasilkan impak besar sejak dilancarkan, dengan beberapa siri perlumbaan khas bagi jentera ZX-25R telah diwujudkan di Jepun.

Bukan itu sahaja, permintaan tinggi terhadap model itu di Asia juga menyaksikan pelbagai alat ganti ‘aftermarket’ ditawarkan penjual.

Bagaimanapun, pakej terbaru daripada pakar alat ganti ‘aftermarket’ di Jepun, Trick Star, menawarkan sesuatu yang luar biasa.

Ini kerana Trick Star kini menawarkan kit turbo khas bagi Kawasaki ZX-25R di Jepun!

Kit turbo tersebut akan menggandakan kuasa ZX-25R kepada 100hp dan mampu membantu model itu mencecah kelajuan maksima setinggi 240km/j.

Bagaimanapun, bagi yang rasa gerun dengan 100hp, Trick Star juga menawarkan kit turbo yang meningkatkan kuasa kepada 60hp naik 10hp berbanding enjin standard.

Namun, Trick Star mengingatkan bahawa kit turbo itu hanya sesuai untuk kegunaan di litar atau pameran sahaja kerana boleh melanggar standard emisi dan gangguan bunyi di tempat awam.

Japanese tuners Trick Star turbocharges the Kawasaki Ninja ZX-25R with 100HP, and it’s capable of hitting 249KM/H!

(more…)

  • Fail paten telah menunjukkan yang Yamaha sedang berusaha menghasilkan sebuah enjin ‘twin’ cas turbo.
  • Yamaha ingin mengurangkan emisi ekzos dengan menggunakan pengecas turbo.
  • Pengecas turbo menambah keberkesanan lohong masukan dengan menyedut lebih banyak udara ke dalamnya.

(more…)

  • Patent filings show that Yamaha is working on producing a turbocharged twin.

  • Yamaha seeks to lower exhaust emissions by utilizing a turbo.

  • A turbo increases intake efficiency by forcing in more air.

Patent filings show that Yamaha is working on producing a turbocharged twin.

However, Yamaha’s turbocharging idea is to beat the Euro 5 emissions standard. To that end, the manufacturer seeks to use a smaller engine to reduce fuel consumption, while the turbo ups the power. Forced induction increases intake efficiency i.e. forces in more air.

The patent also shows that Yamaha is concentrating their effort in the turbo’s wastegate. The wastegate is a device which vents access pressure in the turbo’s compressor. In the patent, Yamaha aims to optimize the wastegate’s actuator to increase the “degree of freedom in the layout of the catalyst.” In layman terms, it means they can fit a bigger catalytic converter.

Turbocharging is not a new to the world of motorcycling. All Big Four manufacturers flirted with forced induction in the 80s. However, they were interested in coaxing more horsepower from smaller engines instead of being concerned with emissions. In the end, issues with turbo lag and cooling killed the turbo bikes.

Yet, we have the supercharged Kawasaki H2 30 years later.

Almost all diesel vehicles use turbocharging to force in more air and clean up exhaust emissions. The bonus is of course, more power and torque from the engine. The manufacturers overcome turbo lag by either utilizing dual turbochargers are turbochargers with variable geometry vanes (VGT). That is why Kawasaki opted for a supercharger instead. Let’s hope Yamaha can address the issue in their own way, too.

Sources: Ride Apart, AMCN, Bennets, Free Patents Online

Leaked patent sketches indicate possibility of a turbocharged Suzuki GSX-R being developed.

(more…)

BMW Group unveils its new BMW M2 MotoGP Safety Car ahead of the 2016 season. (more…)

Insiders in Hamamatsu hints at a brand new Suzuki GSX1300R Hayabusa destined to debut in just a few years. (more…)

Having shown us the Recursion concept during the 2013 Tokyo Motor Show, Suzuki’s intent at bringing forced induction into bikes is very clear indeed. Fuelling the flame further are rumours of said concept being finalised for production in the last few months, followed by the fact that the mighty S-brand’s move towards trademarking the ‘Recursion’ name and filing patents for designs surrounding the bike’s unique powerplant.

Suzuki-EX7-Recursion-turbcharged-intercooled-engine

Well, at the on-going 2015 Tokyo Motor Show, it appears that Suzuki are indeed one step closer towards making the Recursion a production reality. At the heart of Suzuki’s stand was this, a compact and turbocharged two-cylinder engine called the EX7, presumably made for Recursion.

Other than the fact that it has twin camshafts (DOHC) and four valves, Suzuki did not say much about this turbocharged and intercooled parallel twin. It is presumed that the mill displaces about 588cc, which was the quoted engine size of the Recursion concept. The concept also envisioned the mill to generate just over 100hp and at least 101Nm of torque too – not bad for its size.

BR_Suzuki_Recursion_Concept_TMS2013_001

There is still no sight of the Recursion concept’s production version during the 2015 Tokyo Motor Show, which likely suggest that we will only see it next year or early in 2017. However, we are led to believe that Suzuki could surprise all with a reveal in this year’s edition of EICMA that will take place in just several weeks time in Milan, Italy.

 

Sources: Asphaltandrubber and Visordown

Patents filed online indicate possible production plans for the turbocharged Suzuki Recursion Concept.

(more…)

Taking a bold new path, Kawasaki and Suzuki both unwrapped their iteration of their future of bike engines – force-induction. (more…)

Archive

Follow us on Facebook

Follow us on YouTube